Spectral Imaging Target Development Based on Hiearchical Cluster Analysis
نویسندگان
چکیده
Agglomerative hierarchical cluster analysis was used to group similar spectra from a large database of samples. Based on angles between reflectance vectors of members of a cluster, a reflectance vector was selected as representative of that cluster. Representative samples were grouped together and stored as new calibration targets. Simulated wide-band imaging with glass filters was performed using these new calibration targets and a transformation matrix from digital signals to reflectance was derived. Different verification targets were reconstructed using the transformation matrix; the spectral and colorimetric accuracy of the reconstruction was evaluated. It was shown that beyond a threshold number of samples in the calibration target, the performance of reconstruction became independent of the number of samples used in the calculation. The average spectral RMS for a calibration target consisting of 24 samples selected based on clustering were found to be less than 3.2% for GretagMacbeth ColorChecker DC, GretagMacbeth ColorChecker Rendition Chart, and Esser Test Chart TE221.
منابع مشابه
Target Detection Improvements in Hyperspectral Images by Adjusting Band Weights and Identifying end-members in Feature Space Clusters
Spectral target detection could be regarded as one of the strategic applications of hyperspectral data analysis. The presence of targets in an area smaller than a pixel’s ground coverage has led to the development of spectral un-mixing methods to detect these types of targets. Usually, in the spectral un-mixing algorithms, the similar weights have been assumed for spectral bands. Howe...
متن کاملModularity-based Clustering for Network-constrained Trajectories
We present a novel clustering approach for moving object trajectories that are constrained by an underlying road network. The approach builds a similarity graph based on these trajectories then uses modularity-optimization hiearchical graph clustering to regroup trajectories with similar profiles. Our experimental study shows the superiority of the proposed approach over classic hierarchical cl...
متن کاملA New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery
Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detect...
متن کاملTarget Tracking Based on Virtual Grid in Wireless Sensor Networks
One of the most important and typical application of wireless sensor networks (WSNs) is target tracking. Although target tracking, can provide benefits for large-scale WSNs and organize them into clusters but tracking a moving target in cluster-based WSNs suffers a boundary problem. The main goal of this paper was to introduce an efficient and novel mobility management protocol namely Target Tr...
متن کاملAn Improved Time-Reversal-Based Target Localization for Through-Wall Microwave Imaging
Recently, time reversal (TR) method, due to its high functionality in heterogeneous media has been widely employed in microwave imaging (MI) applications. One of the applications turning into a great interest is through-wall microwave imaging (TWMI). In this paper, TR method is applied to detect and localize a target obscured by a brick wall using a numerically generated data. Regarding this, i...
متن کامل